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ABSTRACT 

We construct the monopole spectrum in an SO(10) grand 

unified theory which has an arbitrary pattern of symmetry 

breakdown to SU(3) x ~(1)~~. We show that if the fermion 

fields are in a (16) of SO(10) then it is impossible to find 

an SO(10) theory where monopoles do not catalyze proton 

decay. Furthermore, the branching ratios for monopole 

catalyzed proton decay are identical in so (10) and SU(5) 

grand unified theories. We also present a criterion for 

constructing grand unified theories which do not have 

monopole catalysis of proton decay. 

a Operalod by Unlvarsltles Research Arsoclation Inc. under contract with the United States Department of Energy 
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I. Introduction 

Stable magnetic monopole solutions to the field 

equations of a Yang-Mills theory which is coupled to scalar 

bosons exist in most grand unified theories, (GUTS).' In 

such theories, the color, weak, and electromagnetic groups, 

SW(~) x Su(2) x U(l), (=Gl), are embedded in a semi-simple 

group Gn and monopoles are typically produced at the scale 

where Gn is broken down to Gl. In a theory with a hierarchy 

of mass scales, 

Gn + Gnml + . . . -+ G1 -, SU (3) x u (l),,, (1.1) 

monopoles will appear when there is a non-trivial topology. 2 

(That is, whenever the mapping IIl(G,) -+ IIl(Gn-l) +...+ 

xl Gl) has a kernel which is eventually mapped into the 

identity). Recently, Rubakov3 and Callan have noticed that 

fermion number violating processes can occur in the field of 

a monopole. The amplitudes for such processes are 

suppressed by neither instanton- like exponential factors 

nor by inverse powers of large vacuum expectation values of 

Higgs particles. Instead, Rubakov and Callan claim that 

these fermion number violating processes have typical strong 

interaction cross-sections. In particular, protons can 

decay in the field of a monopole with a cross-section on the 
-2 order of (1 GeV) . 
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Rubakov and Callan considered the eg=1/2 monopole 

occuring in the Georgi-Glashow SU(5) GUT.5 An SU(2) doublet, 

%, is embedded in the (5) as (5) = (0, 0, ?', 0). (The 

fermion basis is (5) = (Jl,F12,Fi3,e-,u) 1 . They found a 

non-zero value for the matrix element between vacuum states 

of a AB=~ four-fermion operator in the field of a monopole, 

< e-uud ,Monopole + o, 
(1.2) 

which was interpreted as evidence for proton decay in a 

monopole field. 

There are some technical problems associated with the 

calculations of both Rubakov and Callan. These analyses are 

performed in the limit in which all of the fermions are 

massless and in which there is only one generation of 

fermions--it is not clear what the effects of finite fermion 

masses will be. Also, all QCD effects have been ignored. 

Our results, however, do not depend directly on these 

technical problems. 

The question we would like to answer is if proton decay 

near a monopole is a general feature of grand unified 

theories or if it is a specific feature of the SU(5) model. 

In particular, is it possible to construct GUTS in which 

monopoles do not catalyze proton decay? Is it possible to 

place restrictions upon the GUT from the features of 

monopole catalyzed baryon number violation, (if it is 

observed)? To approach these questions, we have examined 
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the monopole spectrum in SO(10) GUTS in which there exists 

the possibility of intermediate stages of symmetry breakdown 

between MX and s. The effects of these intermediate mass 

scales on monopole catalysis of proton decay are considered 

and we present a group theoretical procedure for analyzing 

the proton decay occuring near monopoles in a general GUT. 

In Section II, we briefly discuss SO(10) GUTS and the 

predictions for baryon number violating processes due to 

heavy gauge boson exchanges in these models. In Section 

III, we present our method for analyzing the monopole 

spectrum (and the ensuing proton decay) in a GUT model and 

illustrate it in the SO(10) model. In Section IV, the 

monopoles and the resulting proton decay for all possible 

symmetry breakdowns of SO(10) to SU(3) x U(l)em are examined 

and in Section V there is a discussion of our results. 

II. SO(10) Grand Unified Models 

We have considered a class of SO(10) grand unified 

models in which the SO(10) can break directly to the low 

energy group Go = SU(3) x U(l)em or the symmetry breakdown 

can occur via any of the following chains: 

1. so(10) + su(5) + G1 + Go (2.1) 

2. so(10) + su(5) x U(1) + G1 + Go 
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3. SO(l0) + SU(4) x SU(2) x SU(2) + G1 + Go 

4. SO(10) + SU(4) x SU(2) x U(1) -t G1 + Go 

5. SO(10) + SU(3) x SU(2) x U(1) x U(1) + G1 + Go 

The phenomenology associated with each of these patterns of 

symmetry breaking has been extensively discussed in the 

literature.6'7 For our purposes, we note only that the mass 

scales which correspond to each symmetry breakdown are 

restricted by the requirement that the theory reproduce the 

experimental value for the Weinberg angle, sin2eW(MW). The 

restriction that sin20w(MW) =.22 in general restricts 

MX>1015 GeV and MI>lO' GeV, where MX is the scale at which 

the SO(10) symmetry is broken and MI is the scale at which 

the SU(3) x SU(2) x U(1) symmetry is produced. (See Ref. 7 

for explicit details on mass restrictions in these models). 

The fermion fields are embedded in a left-handed 

sixteen dimensional spinor representation of SO(10): 

Y=(u,u1,u2,u3,e ,dl,d2,d3, -~,,~,,~,,-e+,ii3,-~,,-Ulru),. The 

subscripts 1, 2, and 3 are color indices and - denotes 

charge conjugation. (The second and third generations are 

similarly embedded in a (16) of SO(10)). The phases of 

these fields are not important for our results and will 

therefore be ignored in the following. At this stage, the 

model contains a right-handed neutrino which becomes massive 

at the scale MI. 

All of the SO(10) models predict proton decay mediated 

by the gauge bosons which obtain mass MX at the first stage 

of the symmetry breaking. Further, these models predict 
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that the dominant decay mode will be p+lI'e+ and that the 

proton will decay to ue (not Ue) with a branching ratio of 

about 15%. 1 

In the next sections, we will investigate the question 

of whether there is proton decay in these SO(10) GUT models 

due to the existence of monopoles and the effects of the 

intermediate stages of symmetry breaking upon the 

predictions for monopole catalyzed proton decay. Since 

there are monopoles at two different mass scales in some of 

the models of Eq.(2.1), we are particularly interested in 

the question of which monopoles can catalyze proton decay 

and which cannot. 

III. Monopole - Fermion Interactions in GUTS 

(a) Long Range Properties of GUT Monopoles 

The existence of classical monopole solutions to gauge 

theories which are spontaneously broken by the vacuum 

expectation values of scalar fields was first shown by 't 

Hooft and Polyakov' for an SU(2) gauge theory with a triplet 

of Higgs scalars. Using spherical symmetry ansatze, Dokos 

and Tomaras 9 found monopole solutions for the eg=1/2, 1, 

3/2, and 2 embeddings of SU(2) in the Georgi-Glashow SU(5) 

GUT. Horvath and Palla" have extended this work and 

present a method for constructing static, finite energy 

monopole solutions in a grand unified theory. Armed with 

the knowledge that it is possible in general to construct 

spherically symmetric monopole solutions , we only consider 
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the embeddings of SU(2) into a fermion representation of a 

GUT and assume that a suitable monopole ansatz can be 

constructed. The problem is thus reduced to a purely group 

theoretical one. 

We first examine the monopoles formed when a unified 

grouPt Gn , is broken directly to SU(3) x U(l)em. We assume 

that Gn has a trivial II1 group and that SU(3) x umem 

satisfies the charge-triality relation, which forbids 

unconfined fractional charge. Then the topology of the 

problem is defined and several features of the monopole 

spectrum can be discussed without reference to the hierarchy 

of symmetry breaking. These features include the allowed 

magnetic quantum numbers and the stability of the monopole 

under small fluctuations. More detailed questions, like the 

monopole mass, its embedding in Gn and its stability for 

decay to monopoles with smaller topological charges depend 

on the intermediate steps of symmetry breaking. 

Outside the monopole core one can define a charge 

matrix, Q,, in terms of the Dirac string potential, A,: 

3, = Q,(l-co&) i 
rsin8 ' (3.1) 

where Q, is a matrix in some representation of Gn, which we 

will assume to be diagonalized. Since the only long range 

interactions are color and electromagnetism, Q, must be a 

linear combination of the generators of SU (3) and U(l)em: 
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QM = aQ,, + Q,. (3.2) 

(Qem is the electromagnetic charge operator and Q, is a 

color generator whose normalization we have not yet 

specified). The coefficient a and the color generator Qc 

are restricted by the quantization condition and by a 

recently derived stability condition." The latter is a 

criterion for the absence of negative frequency modes for 

non-abelian point monopoles. 

For our purpose the relevant non-abelian group is 

SU(3). Consider a color generator Q; = diag(ql, q2, q3), in 

the fundamental representation of SU(3). Then a necessary 

condition for classical stability of the corresponding point 

monopole is: 11 

9i - 9j = 0, f1/2, i,j=1,2,3. (3.3) 

Since Q; must be traceless this allows only three different 

values of Q; (apart from color rotations); 

Q; = 0 r QG = +y/2 I (3.4) 

where Y = diag (l/3, l/3, -2/3). 

The Dirac quantization condition is in this case; 

exp(41fiQM) =l. (3.5) 

Since we only consider models in which the usual 
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charge-triality relation is satisfied, the allowed 

eigenvalues of Qem for an SU(3) triplet representation 

embedded in QM are -l/3 + m, where m is an integer. From 

Eqs. (3.2), (3.4), and (3.5) we get then the following 

restrictions on a: 

Q;=O ; a=3n/2 (3.6) 

Q;=Y/~; a=1/2 + 3n/2 

Q;=-Y/2 ; a=-l/2 + 3/2n, 

where n is an integer. (Note that Q, is a representation of 

Gn which contains some number of color triplets, each of 

which has an SU(3) generator, Q;=O,fl/2Y). The coefficient a 

is equal to eg, where e is the electromagnetic coupling 

constant and g the magnetic strength of the monopole. For 

the monopoles with lowest magnetic charge one finds 

therefore: 

eg=1/2; QM = l/2 (Q,, + Y) (3.7) 

eg=l; QM = Q,, - Y/2 

eg=3/2; QM = (3/2)Q,, 

eg=2 ; Q,= 2Q em + y/2. 

This specifies the eigenvalues of Q, for any representation 
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of any group that breaks down to SU(3) x U(l)em and 

satisfies the charge-triality relation and the non-abelian 

stability criteria. 

(b) Spherically Symmetric Monopoles 

A procedure to construct a spherically symmetric 

monopole potential from a string potential has been 

described by Wilkinson and Goldhaber. 12 They prove the 

following theorem: 

Consider a unifying group Gn broken down to a subgroup 

H (in our case, H = SU(3) x U(l).,). Let ?! be the generator 

of an SU(2) subgroup of G, and ? the generator of an SU(2) 

subgroup of H, which satisfies [?, Q,] = 0. Then the string 

potential can be gauge-transformed to a potential which is 

spherically symmetric under 2 + !% if and only if 

Q, = I3 - T3 for some choice of ?. (Here 2 is the generator 

of orbital angular momentum). 

Spherical symmetry and the existence of an SU(2) 

subgroup in which the monopole is embedded is important to 

us for two reasons. First, it is generally believed that 

the spherically symmetric monopoles are the lightest in 

their topological class, (unless decay to two or more other 

monopoles is energetically and topologically allowed). 

Second, it is not obvious how to generalize the arguments of 

Refs. 3 and 4 to monopoles which are not associated with an 

su(2) subgroup. 
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Using the relation Q, = I3 - T3 combined with Eq. 

(3.7), we can find the possible T3 assignments for any 

spherically symmetric monopole which satisfies the 

non-abelian stability criteria. In Table 1, we list all 

SU(2) subgroups of SO(10) for which these criteria can be 

satisfied and the values of eg of the corresponding 

monopoles. The T3 eigenvalues for the particles in the (16) 

of SO(10) are not listed, but can easily be obtained. As 

emphasized before, these eigenvalues are the same for all 

SO(10) breaking patterns. However, this does not tell us 

which fields are connected into multiplets. 

To find the fermion multiplets, we must construct the 

raising and lowering operators; 

T+ = T1 + iT2 . (3.8) 

The action of T+ (or T-) on the fermion fields of the (16) 

of SO(10) then defines the fermion multiplets which 

correspond to the monopole embedding ?.. We repeat this 

procedure at each stage of the symmetry breaking where there 

are monopoles formed. In most cases of interest to us the 

raising operator can be obtained by considering the group 

structure. In general,however, this is not a purely group 

theoretical problem. When more than one embedding is 

allowed, one has to compute the masses of the various 

monopoles to determine which one is the lightest and hence 

the stable one. 
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In general, T2 does not commute with the 

electromagnetic charge generator, 

[T2, Q,,] #o. (3.9) 

When this is the case, the eigenstates of T3 and T2 may not 

be charge eigenstates. However, when a color average over 

the monopole embeddings is performed, all operators which 

have AQ, # 0 (and hence AQ,, # 0) will have a zero vacuum 

expectation value between monopole states. Thus the 

operators which have non-zero charge have no physical 

consequences. 

(c) Monopoles and Proton Decay 

Rubakov and Callan have shown that for any GUT with Gn 

a compact, semi-simple group which contains two massless 

fermion SU(2) doublets, Y1 and Y2, 

< E aBEij Y1,i'2E j ,Monopole + o (3.10) 

where c1 and 8 are Lorentz indices and i and j are SU(2) 

group indices. The corresponding cross section is assumed 

to have a magnitude typical of the strong interactions, but 

its precise value is uncertain. The vacuum expectation 

value (Eq. (3.10)) can be calculated exactly for an eg = 

l/2 monopole which couples only to SU(2) massless fermion 

doublets. The calculation is possible because the problem 

can be reduced to the two dimensional Schwinger model which 
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is exactly solvable. The generalization to other eg values 

and SU(2) representations is non- trivial. Fortunately, all 

we have to know is the structure of the relevant operators 

and the relevant features of that structure can be obtained 

by making the following observations. 

First of all, the two fermion operator appearing in 

Eq.(3.10) is precisely the one which interacts with an 

instanton field without a monopole present. l3 (The same is 

true for the corresponding operator with four Weyl fermions. 

In both cases the operators can be converted to the ones 

given in Ref. 13 in terms of Dirac fermions.) Only the 

factor multiplying the operator is radically different. It 

seems reasonable to assume that this property is valid in 

general. Additional support for this assumption is the fact 

that the heuristic arguments of Refs. 3 are essentially 

unchanged if the monopole couples to higher W(2) fermion 

representations. 

In particular, for all cases of interest to us we find 

that it is possible to obtain field configurations with 

non-trivial winding number and infinitesimal contribution to 

the action. The Dirac equation can be solved explicitly in 

this background field, and the correct number of zero modes 

is obtained. This number is dictated by the anomaly of the 

appropriate axial fermion number with respect to the SU(2) 

subgroup, and the number of zero modes is equal to 1/3NfAk t 

(2t + 1)(2t + 2) for an SU(2) representation with 'spin' t, 

Nf flavors and change in winding number Ak. (We consider 



-14- FERMILAB-Pub-82/81-THY 

each fermion multiplet to define a flavor). Therefore, we 

conclude that the relevant operator must be a product of l/3 

Ak t (2t + 1) (2t + 2) fermion fields of each flavor. The 

only other assumption which we will make is that it must be 

a T3 singlet, since T3 is an unbroken generator of SU(2). 

We will assume that the operator,8, constructed in this 

manner will have a matrix element between monopole states of 

order one. 

IV. Results for SO(10) GUTS 

In this section, we apply our procedure to the 

different symmetry breaking patterns of SO(10). In each 

case, we obtain the monopole spectrum, construct the fermion 

multiplets corresponding to the monopole embedding, and 

analyze whether or not the monopoles catalyze proton decay. 

(a) eg=1/2 Monopoles 

We begin our discuss ion by proving a somewhat 

surprising result. That 'is, regardless of how the SO(10) 

symmetry is broken to SU(3) x U(l)em and regardless of how 

the monopole is embedded SO(lO), the eg=1/2 monopoles of an 

SOtlO) GUT will always mediate baryon number violating 

interactions with the same selection rules. 14 This statement 

is independent of the Higgs structure and the symmetry 

breaking pattern of the theory. 
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In Appendix A we show that it is possible to form the 

fermion doublets in such a way that the baryon number, B, is 

conserved in certain GUTS. In that construction, we allow 

the T+ and T- operators of the monopole SU(2) group to be 

any linear combination of the generators of SJ(16), of which 

SO(l0) is a subgroup. Now we will show,however, that within 

SO(l0) alone such a construction is impossible. 

This can most easily be shown for the smallest 

non-trivial SO(10) representation, the (10). The states in 

the (10) have the same SU(3) x U(l)em quantum numbers as d, 

a, e+, e-, u, and j. We will use this identification as a 

convenient way to label them. From Section III, we conclude 

that e+ and a3 have T3 = -l/2 and e and d3 have T3 = l/2; 

the other states have T3 = 0. Thus there are only two 

doublets, compared to four for the (16), and therefore we 

have only a two-fold ambiguity for pairing the states in 

doublets. The most general doublet assignment is: (cf. 

Appendix A), 

- B*e- + a*d3 , 

[ 1 

(4.1) 

a3 

If CY # 0, the operator T- must connect the state e + to e-. 

However, the maximal difference in charge between two states 

that can be connected by an SO(10) generator is f 4/3, 

corresponding to the maximal charge of an SO(10) gauge 
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boson. Therefore, the only possibility is a = 0. Now the 

embedding of the monopole group in SO(10) is fixed, and one 

can find the four doublets in the fermion (16). This is 

simple, since for a = 0 we get exactly the same SU(2) group 

as' in the SU(5) case discussed in Refs. 3 and 4 and 

therefore the fermion doublets are the same. It is 

impossible to have eg = l/2 monopoles in SO(l0) GUTS which 

do not catalyze proton decay. The fermion doublets for an 

SO(l0) eg = l/2 monopole are fixed to be; 

[::I [;,I iI;1 r,:l (4.2a) 

Hence the flavor and T3 singlet operator, 

8 = e d3 u1 u2, (4.2b) 

will have a non-zero expectation value in the presence of a 

monopole and will mediate proton decay. 

(b) SO(l0) + SU(5) + Gl + Go 

The monopole spectrum in this breakdown of SO(l0) is 

given in Table 1. We will analyze only those monopoles with 

eg =1/2, 1, and 3/2 which are formed in the breakdown of 

SU(5), (these monopoles are denoted by an asterisk in Table 

1) . There may be monopoles formed when SO(l0) is broken in 

the first stage but these monopoles presumably decay to the 

SU(5) monopoles and are of no interest to us here. 
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Since the number of fermions in the operator e of 

Section III is equal to the number of zero modes, the eg = 

l/2 monopole will have no = 4 fermion fields in 8, eg = 1 

will have no = 16 fermions, and eg = 3/2 will have no = 40 

fermions for the monopoles formed 'in the breakdown of SU(5). 

Our discussion of the eg = 1 and eg =3/2 monopoles is 

included mainly for pedagogical reasons. (We expect that 

these monopoles decay into the appropriate number of eg =1/2 

monopoles.) 

An eg = 1 monopole can occur for two different 

assignments of the T3 = 0 fermions. Both of these 

embeddings are defined by the T3 eigenvalues of the (5) of 

SU(5) ; 

T3 = (-l,O,O,l,O). 

To obtain this embedding a non-zero I3 is 

four triplets which correspond to the eg 

embedding are; 

[,j [;;I F;] [.; 

(4.3) 

required. 15 The 

= 1 monopole 

(4.4) 

(The alternate T3 = 0 assignment gives a similar conclusion 

about monopole catalyzed proton decay and we will not 

discuss it). The operator mediating proton decay contains 
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sixteen fermions and so a typical operator which has AB=l 

and is a flavor and T3 singlet is; 
3 9 = e-dlu2u3(dlalu2"2) . (4.5) 

(We have suppressed irrelevant quantum numbers). Hence even 

if the eg = 1 monopoles exist and are stable, their effects 

on proton decay will presumably be swamped by kinematic 

effects due to the production of a many fermion state or by 

dimensional factors of the order of (mfermion/m proton) due 
to replacing a fermion operator by a mass term. 

For the eg = 1 monopoles, there are however operators 

with non-zero expectation values which do not exist for the 

eg = l/2 case. There are flavor and T3 singlet operators 
0 which mediate n+ uII ; for example, 

- - 3 8 = uuld2d3(dldlu2u2) . (4.6) 

The final case which we analyze for this breakdown has 

eg = 3/2. The fermions transform under the SU(2) 

corresponding to the monopole embedding as two four-plets 

and a five-plet; 

L 
dl 

d2 

d3 
+ e 

e- ii 3 

a3 i 2 

[I- -1 

d2 1/J2(u1+u1) 

"1 u2 
u3 - 

(4.7) 
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A typical T3 singlet operator mediating proton decay near 

this monopole is then; 

9 = e-dlu2u3(a2d2ii2u2)'. (4.8) 

(c) so(10) + su(4) x SUM x SU(2)R + Gl + Go 

In this breakdown of SO(l0) there are monopoles 

produced at two stages of the symmetry breaking. When 

SO(10) + SU(4) x su(2)L x su(2)R, monopoles are produced 

with masses on the order of MX/cxX, (we call these "heavy" 

monopoles) and when SU(4) x SU(2)L x SUM breaks to SU(3) 

x SU(2) x U(l), "light" monopoles are produced with masses 

MI/y, (aI (a,) is a typical coupling constant at the scale 

MI 0f.J). These monopoles have different topological 

properties. The light monopoles have eg equal to an 

integer, while the heavy ones can have half-integer eg. (we 

have been careless about local and global symmetries. 

SO(l0) is actually spin (lo), the universal covering group 

of SO(lO), and what we call SU(4) x SU(2)L x SU(2)R is 

actually SO(6) x SO(4)). These monopoles and their 

cosmological properties have been considered by Lazarides, 

Shafi, and Magg. 16 

The only interesting heavy monopoles are the ones with 

eg=1/2, which we have already discussed in general. The 

light monopoles are embedded within SU(4) x SU(2)L x SU(2)R. 
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We will only cons ider the case eg=l since all other integer 

charge monopoles w ill probably decay into these. 

In SO(10) there are two choices of T3 which lead to 

stable monopoles. In both cases T3 can be written as a 

linear combination of SU(4), SU(2)L, and SU(2), generators. 

This leads to the following embeddings of the monopole SU(2) 

group in SU(4) x SUM x SV(~)~. (The embedding is defined 

by the breakdown of the fundamental representations of SU(4) 

x SUE, x Su(Z), under SUE. The notation is explained in 

Table 1). 

SU(4) x su(2)L x su(2)R + SU(2) 

case a: (4,1,1) + (2) + 2(l) (4.9a) 
(1,2,U + (2) 
(1,1,2) + (2) 

and 

case b: (4,1,1) + Z(2) (4.9b) 
(1,2,1) + (2) 
(1,1,2) + (2) . 

In case a each factor of the gauge group contains just one 

doublet and therefore T+ and T- are completely determined. 

In case b, all possible ambiguities in choosing the doublets 

correspond to color rotations and are thus irrelevant. 

Since case b is obtained from case a by embedding an extra 

doublet in color space this monopole probably does not exist 

as a stable solution, but we will nevertheless examine both. 

Because T+ and T- are known it is trivial to obtain the 

fermion multiplets in both cases; 
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case a: 

[ ‘:I [ :I] [I:] [I;] [l,nW3;ii 

case b: 

L/fi(a,+Gl 
+ e 

L/Jz(U, 

(4.10a) 

I 

(4.10b) 

u2 

+a,, 

a1 1 
Notice that in the second case we obtain four triplets, 

just as in the SU(~) case, (see Section Ivb.). The grouping 

of the particles into multiplets is however completely 

different. Even if we had chosen a different embedding for 

the eg=l monopoles in SU(S), it would not be possible to 

obtain Eq. (4.10b). 

As in Eq.(4.7) , the T3 = 0 states are not charge 

eigenstates. However, charge conservation is not violated 

for any physical process as explained in Section III. 

From the multiplets of Eq. (4.10), it is impossible to 

construct an operator which has ABfO, AT3=0, is a flavor 

singlet and has AQc=O, (a necessary condition for the 

operator to survive the color averaging). For each 

multiplet of Eq. (4.10a), baryon number can be written as, 

B = -T3 - Q,, + Q, (4.11) 
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where Q is a global U(1) charge which is equal to m for 

the first two doublets in Eq. (4.10a), -l/2 for the second 

two, and zero for the triplets. Since any operator which 

can get a non-zero vacuum expectation value must contain all 

four doublets, such an operator has Q = 0. Because 0 must 

also be a T3 singlet, we find; 

AB = -AT3 - AQ,, + A; = -AQUA. (4.12) 

Therefore, if charge is conserved baryon number is also 

conserved. A similar result holds for the multiplets of Eq. 

(4.10b). So we conclude that the monopoles of an SU(4) x 

su(aL x SU(2dR theory do not cause B-violating processes, 

(at least not with a large cross section). 

This conclusion is not surprising, since the Pati-Salam 

model with fractional charges is known to have no proton 

decay by gauge boson exchange.1' However, baryon number is a 

broken symmetry in any realistic model because B has an 

anomaly with respect to the weak SU(2) group. A monopole 

can in principle enhance both sources of AB # 0 processes 

and therefore absence of proton decay by gauge boson 

exchange does not necessarily imply the same for proton 

decay by monopoles. In fact, as we shall see shortly, even 

in the pure Pati-Salam model, without SO(l0) unification and 

without any perturbative violation of baryon number, we 

expect that monopoles will have a small cross section for 

catalysis of baryon number violating processes. 
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The fact that baryon number is anomaly free for the 

multiplets of Eqs. (4.10a) and (4.10b) is a consequence of 

the left-right symmetry of SU(3) x U(l)em. However, this 

symmetry is not exact. When the model goes through the 

SU(3) x SU(2) x U(1) stage of symmetry breaking the 

left-right symmetry is obviously broken. Therefore it is 

not surprising to find that the fermion multiplets to which 

the SU(3) x SU(2) x U(1) monopole couples have a net baryon 

number anomaly. Consequently, SU(3) x SU(2) x U(1) 

monopoles can catalyze B-violating processes. Inside a 

radius S MW -1, SU(3) x U(1) em monopoles behave like SU(3) x 

SU(2) x U(1) monopoles and therefore the eg=l monopole will 

catalyze B-violating processes. The cross section for these 

processes must vanish for MW + m and is thus proportional to 

some negative power of Mw. The effect, even though it may be 

rather small, is in any case much more important than the 

only other B-violating process in the model, the instanton 

process discussed by 't Hooft. 13 

(d) Other Embeddings 

(i) SO(10) + SU(5) x U(1) + SU(3) x SU(2) x U(1) x U(1) 

+G’G 10 
The extra U(1) factor in the first stage of the 

symmetry breakdown can be identified as B-L and so it is 

orthogonal to the electric charge. Thus the monopoles 

formed when SO(10) + SU(5) x U(1) will not exist at large 
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distances and are uninteresting to us. The monopoles formed 

in the breakdown of SU(5) x U(1) are the same as those 

discussed in Section IVb. 

(ii) SO(10) + SU(4) x SU(2) x U(1) + G1 + Go 

The monopoles formed in the breakdown of SO(l0) are the 

same as those discussed previously. There are no monopoles 

formed in the intermediate stage of symmetry breaking which 

satisfy the non-abelian stability criteria. 

V. Conclusion 

In the previous sections, we have analyzed monopole 

catalysis of proton decay for different breaking patterns of 

SO(10) to SU(3) x U(l)em and presented a group theoretical 

analysis of the monopole spectrum in SO(10). A priori, 

there is no reason to expect that the monopole structure of 

SO(10) GUTS will be the same as that of SU(5). However, we 

found that the structure of the lowest energy, (eg=W) , 

monopole of SO(10) is uniquely determined by the group 

structure and is identical to the eg=1/2 monopole for SU(5). 

Thus monopole catalyzed proton decay can not distinguish 

between SO(10) and SU(5) GUTS. 

Our most interesting result was found in the case where 

SO(10) breaks to Go via SU(4) x SU(2)L x SUM. In this 

case, the monopoles formed in the intermediate stages of the 

symmetry breakdown (i.e. the monopoles of the Pati-Salam 

model) do not catalyze proton decay with a strong 
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interaction rate. However a small proton decay cross 

section is expected to exist,even though there is no proton 

decay due to boson exchange. 

There are clearly many questions about monopole 

catalysis of proton decay left to be answered--the most 

important of these being the actual value for the rate. We 

hope that this paper will stimulate discussion of these 

questions. 

Acknowledgements. We are grateful to w. Bardeen and J. 

Rosner for valuable discussions. 
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Appendix A 

GUTS Without Monopole Catalysis of Proton Decay 

In this appendix we determine the fermion doublet 

assignments for the eg=1/2 monopole which do not lead to 

violation of baryon number. Let us first formulate the 

problem. 

Consider the 16 fermions in the first generation. (To 

simplify the argument,we assume the existence of a 

right-handed U, although the same conclusions can be reached 

without it). The T3 eigenvalues of these fermions are 

known, but the raising and lowering operators depend on the 

details of the model. In other words, one does not know a 

priori which T3 = l/2 fermion belongs to which T3 = -l/2 

fermion. The question we will answer is: Are there choices 

for T+ and T- and corresponding doublet assignments which do 

not lead to B violation? This is of course only a necessary 

condition for absence of monopole induced B violation. It 

may still be impossible to construct a model which has 

eg=1/2 monopoles which couple to those doublets. 

To answer the question we consider the maximal symmetry 

group of the first generation, So. The results will 

then apply to any gauged subgroup in SU(l6). We choose a 

basis in which the first four states are the T3 = l/2 

fermions, e-, d3, U1rU2, the next four the T3 = -l/2 

fermions, e+, a,, ul, u2, and the last eight the remaining 

T3=0 fermions. The most general T+ and T- that close the 
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SU(2) algebra are; 

T+= 0 U [ 1 0 0 T- = 0, 0 [ 1 u 0 (Al) 

where T ' and T- are 0 x 8 matrices which operate on the 

first 8 components of the basis, and U is a 4 x 4 unitary 

matrix. The doublet assignment appears more clearly in a 

different basis, obtained by a transformation: 

(A7-1 Ti +ST i s-l 

S =s 0 , [ 1 O1 
ss+ = 1. 

s2 

Now T+ and T- are, 

T+ = 0 
0 

s1 u 
0 

s2-l 1 

(A3) 

= 
[ O+ s2 u sl-l 

0 
0 1 . 

By choosing Sl = 1 and S2 = U, T+ and T- are brought to 

a simple form .th and the four doublets are formed by the i 

and (4+i) th element of the transformed basis. Notice that 

the transformation S only rotates the T3 = -l/2 fermions. A 

more general choice would be S2 = Sl u. Then the matrix S 

can be written as follows; 

(A41 

This corresponds to an additional SU(4) flavor rotation of 

the doublets by a matrix Sl, which rotates the upper and 

lower components in the same way. The four fermion operator 

which gets a non-vanishing vacuum expectation value due to 

the monopole is an SU(~)- flavor singlet, at least in the 
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limit considered in Refs. 3 and 4. This can be shown 

explicitly by repeating the calculations of Ref. 3 for the 

case of four doublets. Therefore the operator does not 

depend on Sl and we can choose it equal to the unit matrix. 

One can only expect AB#O processes to be absent if B is 

an exact symmetry of the four-fermion operator. Otherwise 

ABfO processes may manifest themselves in a different way 

than monopole + p + monopole + e +, but they will be present 

in some form. Therefore B must be a linear combination of 

the unbroken symmetry generators. 

The unbroken symmetries are U Cl),,, SU(31, and the 

SU(4) flavor symmetry. (The first two symmetries are not 

strictly symmetries of the operator, but all charge and 

color changing matrix elements vanish when one averages over 

the color embeddings of the monopole). Therefore the 

criterion for absence of B violation is that for the eight 

fields appearing in the doublets, 

B = "Qem + Qc + i (A51 

where Q, is a color generator and i is an W(4) flavor 

generator. The matrix, is simplest in the transformed 

basis, in which the doublets are manifest. In that basis: 

M=M 0 [ 1 (A61 
0 MI 

where M can be any SU(4) generator. Transforming this 

matrix back to the original basis we get: 
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M =S 0 
S2-' M S2 1 (A7) 

Now consider the color generator Q,. Any off-diagonal 

matrix elements involving the third component of color must 

vanish if Eq. (A5) is to be satisfied. Then Q, can be 

diagonalized in the subspace of the first two components, so 

that all three matrices B, Q,,, and Q, are diagonal in this 

basis. Then both M and S2-l M S2 must be diagonal. If all 

eigenvalues of M are different, S2 can only be a permutation 

of the eigenstates; if two or more are the same then 

rotations of these eigenstates are allowed. In any case, M 

corresponds to a U(1) generator which may be different for 

each doublet. 

Now we use the fact that the T3 = -l/2 fermions are the 

anti-particles of the T 3 = l/2 ones. Therefore Q,,, M, and 

PC have opposite signs, and hence the eigenvalues of M must 

also be opposite. Therefore, modulo permutations, the 

eigenvalues of M and S2 M S2 -1 are both identical and 

opposite in sign. This is only possible if for any 

eigenvalue of M there is one with opposite sign. 

The diagonal color generator Q, can be written as a 

linear combination of Y and I~: 
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QC = BY + Y13 

Y = diag(1/3, l/3, -2/3) 

(A8) 

I3 = diag(1/2,-l/2,0) 

We now use the fact that M must be traceless, (notice 

that the unbroken flavor group is SU(4) and not U(4), since 

the u(1) factor has an anomaly with respect to the SU(2) 

group of the monopole). Tracelessness of M leads to the 

following relation between a and 8; 

8cr + 48 = 1. (A9) 

The matrix elements of M can be expressed in terms of CL and 

Y. From Eqs. (A5), (A8), and (A9) we find, 

M = diag(-a, c-1/2, -1/2y+1/4, 1/2y+1/4). (AlO) 

We must group the eigenvalues in pairs with opposite signs. 

There are three ways to do this. Notice, however, that 

equivalent results are obtained when u1 and u2 are 

interchanged. Therefore there are only two different 

possibilities; 

1. -a = -(cY - l/2); 1/2y - l/4 = 1/2y + l/4. 

This is obviously impossible. 

2. -a = -(-1/2y + l/4); a - l/2 = -1/2y - l/4. 

This second case has a solution: 
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M = diag(l/zy - l/4, -1/2y -l/4, -112~ + l/4, 

1/2y + l/4). (All) 

This leads to the following doublets; 

i:J [I:] [ ::I [ ;;I (A12) 

Such a doublet assignment can occur in models in which 

fermions and antifermions are in separate representations, 

for example Su(8jL x Su(8jR models. 

There are a few more possiblities since y can be chosen 

in such a way that two eigenvalues are degenerate. Then, as 

mentioned before, it is allowed to consider orthogonal 

linear combinations of the corresponding eigenstates. The 

possibilities are; 

y = 0; Degenerate eigenstates: ul, u2 and e', a3 , 

y = l/2; Degenerate eigenstates; ul, e+, 

y = -l/2: Degenerate eigenstates; u2, a3. 

Restricting ourselves to charge-eigenstates we find then the 

following additional possibilities; 
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% e- [I [i a3 u1 

u2 ii1 11 [I a3 u1 

d3 e- [I [I d3 u1 

d3 [I u2 

d3 III u2 

u 2 

[I u2 

(Al31 

Combinations obtained by interchange of the color indices 1 

and 2 are ignored. 

In this appendix, we have constructed the most general 

set of fermion multiplets for eg = l/2 monopoles embedded in 

So or any of its subgroups,which do not give rise to 

proton decay. These multiplets are given in Eqs. (A121 and 

(A13). Of course this result applies only to the leading 

contributions discussed in Refs. 3 and 4. Other less 

important processes may still be present. 

In the models which do not satisfy our criteria,the 

allowed baryon number violating processes are sometimes 

quite complicated and may involve all three generations of 

fermions. This can require flavor changing interactions 

like W-exchange or off-diagonal elements of mass 

matrices,which will lead to a suppression of the rate. 
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Table I. SU(2) embeddings in SO(10) which allow spherically 

symmetric monopoles with stability under fluctuations. The 

first column gives the SU(2)-representation which is 

embedded in the 10 of SO(l0). Irreducible SU(2) 

representations are specified by their dimension. The 

second column gives the value of eg for the corresponding 

monopole. Monopoles which appear in the Georgi-Glashow 

SU(5) GUT are denoted by an asterisk; monopoles which appear 

in the Pati-Salam models are denoted by a +. 

SU(2) Representation 
Embedded in the 10 of SO(l0) eg 

2(z)* w 

2(3)*+ 1 

(7) 3 

2(2) + (3)+ 1 

(3) + (5) 2 

4(2)* l/2 

2(4)* 312 

2(2) + (5) 2 


